首页> 外文OA文献 >Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors
【2h】

Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors

机译:二维跃迁中的电荷传输和移动工程   金属硫属化物半导体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two-dimensional (2D) van der Waals semiconductors represent the thinnest, airstable semiconducting materials known. Their unique optical, electronic andmechanical properties hold great potential for harnessing them as keycomponents in novel applications for electronics and optoelectronics. However,the charge transport behavior in 2D semiconductors is more susceptible toexternal surroundings (e.g. gaseous adsorbates from air and trapped charges insubstrates) and their electronic performance is generally lower thancorresponding bulk materials due to the fact that surface and bulk coincide. Inthis article, we review recent progress on the charge transport properties andcarrier mobility engineering of 2D transition metal chalcogenides, with aparticular focus on the markedly high dependence of carrier mobility onthickness. We unveil the origin of this unique thickness dependence andelaborate the devised strategies to master it for carrier mobilityoptimization. Specifically, physical and chemical methods towards theoptimization of the major factors influencing the extrinsic transport such aselectrode/semiconductor contacts, interfacial Coulomb impurities and atomicdefects are discussed. In particular, the use of \textit{ad-hoc} moleculesmakes it possible to engineer the interface with the dielectric and heal thevacancies in such materials. By casting fresh light onto the theoretical andexperimental works, we provide a guide for improving the electronic performanceof the 2D semiconductors, with the ultimate goal of achieving technologicallyviable atomically thin (opto)electronics.
机译:二维(2D)范德华半导体代表了已知的最薄,最稳定的半导体材料。它们独特的光学,电子和机械特性为将它们用作电子学和光电子学新应用中的关键组件具有巨大潜力。但是,二维半导体中的电荷传输行为更容易受到外部环境的影响(例如,空气中的气态吸附物以及基板中捕获的电荷),并且由于表面和体积重合,它们的电子性能通常低于相应的本体材料。在本文中,我们回顾了二维过渡金属硫属元素化物的电荷输运性质和载流子迁移工程的最新进展,尤其着重于载流子迁移率对厚度的显着依赖性。我们揭示了这种独特的厚度依赖性的起源,并阐述了设计策略以掌握它,以优化载流子迁移率。具体而言,讨论了用于优化影响外在传输的主要因素(例如电极/半导体接触,界面库仑杂质和原子缺陷)的物理和化学方法。特别地,\ textit {ad-hoc}分子的使用使得可以设计与电介质的界面并修复此类材料中的空位。通过为理论和实验工作注入新的光,我们提供了改善2D半导体电子性能的指南,其最终目标是实现技术上可行的原子薄(光)电子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号